
The Vi Editor:
A far-from complete guide

Jonathan V. Phillips

THE FREQUENTLY-ASKED QUESTIONS
(FAQ) COLUMN

------------ What is vi? ------------
Vi is a fully-featured text editor that features

multiple-file editing during one session, interaction
with a UNIX shell during operation, macros, and
numerous other advanced functions. Vi was
developed by Bill Joy as part of the BSD UNIX
project, and has become a standard on any UNIX-
like system.

----- Why should I use vi? -----
Despite the bad reputation vi has acquired as

arcane or cryptic, it deserves a close examination in
choosing your text editor. Don't simply try using this
editor once to make a decision—play around with it.
You'll find the commands are much more intuitive
than the complicated Control-key sequences of
emacs, and its features leave Pico in the dust. Give
vi a try!

------- How do I start vi? -------
Vi can be started with a variety of command-line

options. A few of the most common ones are listed
below. From your home directory (or any directory
where you have "write" rights), simply type:

vi file To start editing file file with vi.
vi +n file To start editing file at line n.
vi +/xxx file

Edits file at first occurrence of
xxx.

---- How do I pronounce vi? ----
By the way, this question is not actually

frequently asked, but it needs to be addressed. The
correct pronunciation is "vee-eye."

NOTE: In this guide, letters or words typed in italics
are meant to be replaced by appropriate letters or
words depending on what you wish to do.

-- ENTERING TEXT (INPUT MODE)--

The vi editor starts up in "command mode." This
means that you cannot at first type text directly
into your file. To do so, you must invoke "input
mode" by typing the appropriate letter. Some
commands associated with this process are listed
below:
a append typed text after the

cursor
A append text at end of line
i insert text before cursor
I insert text at beginning of line
R "overwrite" text at cursor
o insert a line below current line

and begin text there
O insert a line above current line

and begin text there

Once you have entered input mode by one of the
above commands, you may type your text. You
may use BACKSPACE if you make an error, but
you cannot move around on the page otherwise.
To do so, you must reenter command mode by
pressing the ESCAPE key.

-- COMMAND MODE OPTIONS--

NOTE: Typing a number before a command repeats
that command that number of times.

· Moving Around
Vi provides a multitude of movement commands.

Here are some of the more useful ones
(remember you must be in command mode to use
these).
h,j,k,l move left,down,up,and right (on

some systems the cursor keys
will function as well)

SPACEBAR move right one character
w or W move forward by one word
b or B move backward by one word
e or E move to the end of current word

0 first character of current line
$ last character of current line
^ first nonblank character of

current line
- first nonblank character of

previous line
+ first nonblank character of next

line

H top line of screen
M middle line of screen
L last line of screen
nH n lines after top line
nL n lines before last line

CTRL-F scroll forward one screen
CTRL-B scroll backward one screen
CTRL-D scroll down one-half screen
CTRL-U scroll up one-half screen
CTRL-E scroll to show one more line at

bottom of screen
CTRL-Y scroll to show one more line at

top of screen
z RETURN put current line at top of screen
z. put current line at middle of

screen
z- put current line at bottom of

screen
CTRL-L redraw screen

· Editing Commands
In general (although not entirely), editing commands

in vi have the following format:
[n] operator object

where the operator is one of the following:
c begin a change
d begin a deletion
y begin a yank (or copy)

The object can represent a character, word,
sentence, paragraph, or section. In general, the
object is the key you would press in command
mode to refer to the desired text. For example, w
is a word, ^ is the first character of the current

line, and) represents a sentence. If the operation
is to be performed on the entire current line,
simply repeat the letter twice (cc, dd, or yy).

The n represents the number of times the following
operation is to be performed. As usual, if no n is
specified, 1 is assumed. Here are some examples
of the normal use of these commands (and some
exceptions):
ncw change n words
cc change current line
C change text from current

position up to end of line
ndd delete n lines
d^ delete back to beginning of line
D delete remainder of line
d/pat delete up to first occurrence of

the pattern pat
dn repeat pattern delete
dG delete to end of file
yw copy (yank) a word
nyy copy n lines
y) copy to beginning of next

sentence
p place text previously copied
nx delete n characters starting at

cursor
nX delete previous n characters
. repeat last change
~ reverse case

· Large Movement Commands
If you're working with big files, you may need to

search for specific text, go directly to line
numbers far away, or mark positions.

Here are some ways to search:
/text search forward for text
/ repeat forward search
?text search backward for text
? repeat backward search
n repeat previous search
N repeat previous search in the

opposite direction

A few commands relating to line numbers:
CTRL-G display current line number
nG go to line n
:n go to line n
G go to last line in file

And some marking commands:
mx mark current position with

character x
`x move cursor to mark x
'x move to start of line containing

x
`` move to previous mark (or

location prior to last search)
'' like ``, but go to start of line

· Saving and Exiting
Alas, all good things must come to and end, and

sometime you will wish to leave the vi editor.
Here are some ways to save your work and to
exit vi:
ZZ Quit vi, and write (save) file

only if changes were made
:q! Quit vi and DO NOT WRITE
:wq Write and quit current file
:w Write file
:w file Save copy to file
:q Quit file
:e! return to version of current file

at time of last write

· Multiple File Access
As your skill increases, you might want to handle

multiple files in one session of vi. Here are some
commands which will get you started with
multiple files:
:e file edit another file, current file

becomes alternate
:e! return to last saved version of

file
:e + file begin editing at end of file
:e +n file open file at line n
:e # open to previous position in

alternate file
:n edit next file
:args display multiple files to be

edited
:rew rewind list of multiple files to

top

· UNIX Interaction
Inserting files and text output from UNIX

commands is a vital feature of any editor (even
Pico can sort of do this). Here are some related
commands:
:r file read in contents of file after

cursor
:r !command

read in output from command
after current line

:nr !command
like above, but put output after
line n (0 for top of file)

:!command run command, then return to vi
CTRL-Z suspend vi, return with fg

· Macros
You might find it helpful to abbreviate long

sequences of commands you perform frequently.
Here are some ways to do so:
:ab in out use in as an abbreviation for out
:unab in remove abbreviation for in
:ab list abbreviations
:map c sequence

map character c as a sequence of
commands

:unmap c disable map for character c
:map list characters that are mapped

Note: The following characters are not used by
command mode and may be mapped by the user:
Letters: g K q V v
Control Keys: ^A ^K ^O ^T ^W ^X
Symbols: _ * \

· Miscellaneous
Here are some commands which really didn't fit

anywhere else.

J Join two lines
:j! Join two lines, preserving blank

spaces
<< shift current line left by one shift

width (default=8 spaces)
>> shift current line right by one

shift width (default=8 spaces)

:%s/text/new-text/ Replaces text once
:%s/text/new-text/g Replaces text

globally

· Credits
Primary sources (and great UNIX references in

general):
UNIX in a Nutshell: System V Edition. By Daniel

Gilly and the staff of O'Reilly & Associates, Inc.
Sebastopol, CA: O'Reilly & Associates, Inc.,
1992.

UNIX for the Impatient. By Paul W. Abrahams and
Bruce R. Larson. New York: Addison-Wesley
Publishing Company.

